Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

catena-Poly[[bis(nitrato- $\left.\kappa^{2} O, O^{\prime}\right)$ -copper(II)]- μ-propane-1,3-diylbis(diphenylphosphine oxide) $\left.-\kappa^{2} O: O^{\prime}\right]$

Andrew W. G. Platt and Anthony M. J. Lees*

Faculty of Sciences, Staffordshire University, College Road, Stoke-On-Trent ST4 2DE, England
Correspondence e-mail: a.m.lees@staffs.ac.uk

Received 12 July 2007
Accepted 6 August 2007
Online 1 September 2007
The structure of the title complex, $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{P}_{2}\right)\right]_{n}$, consists of polymeric chains formed by propane-1,3-diylbis(diphenylphosphine oxide) ligands bridging between metal centres. The Cu atom lies on a twofold rotation axis and a further symmetry centre bisects the bridging bisphosphine dioxide ligand. The CuO_{6} coordination geometry is a distorted octahedron, with the bidentate chelating nitrate groups adopting a cis configuration.

Comment

Bis(diphenylphosphino)alkane dioxides are capable of coordinating to transition metal ions via monodentate, bidentate chelating or bridging bonding modes. There are examples of 1,1-bis(diphenylphosphino)methane dioxide (dppmO_{2}) acting as both a chelating ligand (Arnáiz et al., 2002) and a bridging ligand (Ding et al., 2000); there are similar examples of 1,2bis(diphenylphosphino)ethane dioxide $\left(\mathrm{dppeO}_{2}\right)$ chelating (Povey et al., 1991) and bridging between metal centres (Harding et al., 2007; Yang et al., 2000). Although there are many structural examples of $\kappa^{2} P, P^{\prime}$ complexes of $1,3-$ bis(diphenylphosphino)propane (dppp) with transition metals (Davies et al., 2005; Smith et al., 2003; Morgan et al., 2002), and reports of the catalytic efficacy of 1,3-bis(diphenylphosphino) propane dioxide $\left(\mathrm{dpppO}_{2}\right)$ (Ogawa et al., 2004), there are few examples of dpppO_{2} complexes of transition metals. One such complex, $\mathrm{MoO}_{2} \mathrm{Cl}_{2}\left(\mathrm{dpppO}_{2}\right)$ (Oh \& Mo, 1995), consists of discrete mononuclear units containing a chelating dpppO_{2} ligand. We report here the structure of a further transition metal complex of dpppO_{2}, the title compound, $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{dpppO}_{2}\right)\right]_{n}$, (I) (Fig. 1), prepared as an extension of our work with the bisphosphine dioxide complexes of the lanthanide elements.

The structure of (I) consists of polymeric chains formed by dpppO ${ }_{2}$ ligands bridging between metal centres. The metal complex is centrosymmetric, with the Cu atom sitting on a twofold rotation axis. The coordination geometry about copper is a distorted octahedron with four short $[\mathrm{Cu}-\mathrm{O}(\mathrm{P})=$
1.922 (2) \AA and $\mathrm{Cu}-\mathrm{O}(\mathrm{N})=1.996$ (2) \AA] and two long $\mathrm{Cu}-\mathrm{O}$ bonds $[\mathrm{Cu}-\mathrm{O}(\mathrm{N})=2.428(2) \AA]$. The distortion from octahedral geometry is attributed to Jahn-Teller distortion, weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions and the small bite angle of the bidentate nitrate ligands $\left[\mathrm{O}-\mathrm{Cu}-\mathrm{O}=57.94\right.$ (6) ${ }^{\circ}$]. The geometry may also be described as distorted tetrahedral by considering the nitrate ligands to be bound through a single coordination site. The $\mathrm{N} \cdots \mathrm{Cu} \cdots \mathrm{N}$ angle $\left[110.89(8)^{\circ}\right]$ supports this description, but the other bond or interatom angles deviate significantly from those of the ideal polyhedron (Table 1).

(I)

The PO groups are bound to the Cu atom in a cis conformation. This contrasts with the trans configuration observed in $\mathrm{Cu}\left(\mathrm{Ph}_{3} \mathrm{PO}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}$ (Ferrari et al., 1986) but is consistent with the geometry of $\mathrm{Ni}\left(\mathrm{Cy}_{3} \mathrm{PO}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}$ (Cy is cyclohexyl; Kennedy et al., 1997). The $\mathrm{Cu}-\mathrm{O}(\mathrm{P})$ and $\mathrm{P}-\mathrm{O}$ bond distances are typical for coordinated phosphine oxides, viz. 1.923 (2)

Figure 1
A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$.]
and 1.508 (2) \AA compared with 1.941 (4) and 1.509 (5) \AA in $\mathrm{Cu}\left(\mathrm{Ph}_{3} \mathrm{PO}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}$ (Ferrari et al., 1986), and 1.967 (4) and 1.498 (5) \AA in $\left[\mathrm{Cu}\left\{\left(\mathrm{Ph}_{2} \mathrm{PO}\right)_{2} \mathrm{C}_{2} \mathrm{H}_{4}\right\} \mathrm{Br}_{2}\right]_{n}$ (Yang et al., 2000). The $\mathrm{P}-\mathrm{O}, \mathrm{P}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ bond lengths in (I) do not differ significantly from those of the chelating dpppO_{2} ligand in $\mathrm{MoO}_{2} \mathrm{Cl}_{2}\left(\mathrm{dpppO}_{2}\right)$ [1.496 (6)-1.499 (6), 1.80 (1)-1.84 (1) and 1.54 (1)-1.56 (1) A; Oh \& Mo, 1995].

The nitrate ligands are bidentate and bound asymmetrically, with $\mathrm{Cu}-\mathrm{O}(\mathrm{N})$ distances of 1.996 (2) and 2.428 (2) \AA, respectively, and this is reflected in the $\mathrm{N}-\mathrm{O}$ bond lengths [1.296 (2) and 1.254 (2) \AA]. The difference between the $\mathrm{Cu}-$ O bond lengths $[0.432$ (3) \AA] is similar to that observed in (2-methylpyrazine)copper(II) [0.467 (5) A; Amaral et al., 2001] and intermediate between those of $\mathrm{Cu}\left(\mathrm{Ph}_{3} \mathrm{PO}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}$ [0.232 (8) \AA; Ferrari et al., 1986] and $\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{NO}_{3}\right)-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}[0.621$ (6) \AA; Zheng et al., 2005]. Nitrate groups on adjacent Cu atoms of the polymer are on the same side of the chain (Fig. 2). This contrasts with the dppeO_{2} complex of CuBr_{2} (Yang et al., 2000), in which the anionic ligands display an alternating arrangement. The differences in these arrangements are accommodated by the additional C atom in the aliphatic chain of the bridging diphosphonate molecule of (I) and the conformation of the aliphatic chains. In the dppeO_{2} ligand, the $\mathrm{C}-\mathrm{C}$ bond exhibits an anti conformation, with the $\mathrm{P}=\mathrm{O}$ bonds oriented in an antiparallel arrangement. Both $\mathrm{C}-\mathrm{C}$ bonds of the aliphatic chain of the dpppO_{2} ligand in (I) also show an anti conformation, but in this case the $\mathrm{P}=\mathrm{O}$ bonds are arranged to produce an $\mathrm{O}=\mathrm{P} \cdots \mathrm{P}=\mathrm{O}$ dihedral angle of 77.7 (1) ${ }^{\circ}$. In the complex $\mathrm{MoO}_{2} \mathrm{Cl}_{2}\left(\mathrm{dpppO}_{2}\right)(\mathrm{Oh} \&$ Mo, 1995), both $\mathrm{C}-\mathrm{C}$ bonds adopt a gauche conformation to accommodate chelation. The free dpppO_{2} ligand has been reported to crystallize as a hydrate (Calcagno et al., 2000) in which the dpppO_{2} molecule does not exhibit the twofold rotational symmetry observed in (I). In the structure of the hydrate, the alkyl chain of the hydrogen-bonded dpppO_{2} molecule consists of one anti $\mathrm{C}-\mathrm{C}$ bond and one gauche $\mathrm{C}-\mathrm{C}$

Figure 2
The packing of (I), showing polymeric chains running along the [100] direction. H atoms and phenyl groups have been omitted for clarity.
bond, shifting the orientation of the $\mathrm{P}=\mathrm{O}$ bonds towards the more favourable antiparallel alignment.

Although there are no classical hydrogen bonds in the structure of (I), there are a number of intra- and intermolecular short contacts, indicating weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions, which may stabilize ligand conformation and regulate crystal packing. In the structure of (I), two intramolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions serve to stabilize the parallel alignment of ligands within the polymer chain. These consist of methylene-phenyl and phenyl-phenyl (edge-toface) $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions with $\mathrm{H} \cdots \pi$ (centroid) distances of 2.71 and $2.73 \AA$, respectively. In the first of these interactions, methylene atom C13 acts as a donor, via atom $\mathrm{H} 13 B$, to the $\mathrm{C} 1-\mathrm{C} 6$ ring at $\left(-x+1, y,-z+\frac{1}{2}\right)$, and in the second interaction, phenyl atom C3 acts as a donor, via atom H3, to the $\mathrm{C} 7-\mathrm{C} 12$ ring at $(x+1, y, z)$. The observed $\mathrm{H} \cdots \pi$ (centroid) distances are appreciably shorter than those reported for similar interactions in a series of free and solvated alkyl bis(diphenylphosphine oxides) (2.95-3.65 \AA; Calcagno et al., 2000).

Intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions between phenyl CH groups and coordinated O atoms influence the asymmetry of the bidentate nitrate ligands, in that the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction corresponds to the O atom with the longer $\mathrm{Cu}-\mathrm{O}$ bond. Phenyl atom C2 acts as a hydrogen-bond donor, via atom H 2 , to atom O 2 within the same asymmetric unit. The $\mathrm{C} \cdots \mathrm{O}$ distance $[3.462(3) \AA$] is shorter and the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ angle $\left(165^{\circ}\right)$ is smaller than the ranges reported for structures of alkyl bis(diphenylphosphine oxides) (3.52-3.60 \AA and $169-$ 175°; Calcagno et al., 2000). Further $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions exist between polymer chains; two phenyl $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions $\left[\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 4\left(-x+\frac{3}{2}, y-\frac{1}{2}, z\right): 3.360\right.$ (3) \AA and 148°; $\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O} 2\left(x-\frac{1}{2},-y+\frac{1}{2},-z\right): 3.391$ (3) \AA and $\left.129^{\circ}\right]$ and one methylene $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction $[\mathrm{C} 13-\mathrm{H} 13 A \cdots$ $\mathrm{O} 4\left(-x+\frac{1}{2}, y-\frac{1}{2}, z\right): 3.508$ (3) \AA and 152°] provide a link between the nitrate groups of one polymeric chain and two further chains. The $\mathrm{C} \cdots \mathrm{O}$ distances and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ angles in (I) all fall within accepted ranges for this type of interaction (3.0-4.0 A and 90-180 ${ }^{\circ}$; Desiraju, 1991).

Experimental

Hot ethanol solutions of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and propane-1,3-diylbis(diphenylphosphine oxide) were mixed in stoichiometric quantities. Slow evaporation of the resulting solution led to the formation of pale-blue crystals of (I).

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{P}_{2}\right)\right]$
$M_{r}=631.98$
Orthorhombic, Pbcn
$a=7.9585$ (1) \AA
$b=16.8134(4) \AA$
$c=21.6220(5) \AA$

Data collection

Bruker-Nonius KappaCCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.758, T_{\text {max }}=0.991$
$V=2893.23(10) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.92 \mathrm{~mm}^{-1}$
$T=120$ (2) K
$0.32 \times 0.04 \times 0.01 \mathrm{~mm}$

25739 measured reflections
3315 independent reflections
2783 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.069$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
Only H-atom displacement
$w R\left(F^{2}\right)=0.082$
$S=1.05$
parameters refined
3315 reflections
184 parameters

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.9224(15)$	$\mathrm{N} 1-\mathrm{O} 3$	$1.296(2)$
$\mathrm{Cu} 1-\mathrm{O} 2$	$2.4279(16)$	$\mathrm{N} 1-\mathrm{O} 4$	$1.227(2)$
$\mathrm{Cu} 1-\mathrm{O} 3$	$1.9960(16)$	$\mathrm{P} 1-\mathrm{O} 1$	$1.5084(16)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.5935(19)$	$\mathrm{P} 1-\mathrm{C} 13$	$1.796(2)$
$\mathrm{Cu} 1-\mathrm{P} 1$	$3.2754(6)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.532(3)$
$\mathrm{N} 1-\mathrm{O} 2$	$1.254(2)$		
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$	$94.95(9)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 3$	$57.94(6)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2$	$94.54(6)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$95.98(6)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$109.01(6)$	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$89.19(9)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$89.41(6)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$91.57(6)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 3$	$166.62(6)$	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$	$137.68(6)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$145.14(8)$	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$	$110.89(8)$

Symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$.

All H atoms were located from a difference map but were ultimately refined in idealized positions (aromatic $\mathrm{C}-\mathrm{H}=0.95 \AA$ and methylene $\mathrm{C}-\mathrm{H}=0.99 \AA$) and constrained to ride on their parent atoms. The H atoms of each functional group were assigned a common refined isotropic displacement parameter; final H -atom displacement parameters were 0.026 (2) (aromatic) and 0.022 (4) \AA^{2} (methylene).

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski \& Minor, 1997) and COLLECT; data reduction: $D E N Z O$ and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SNOOPI (Davies, 1983); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004); software used for structure analysis: Mercury (Macrae et al., 2006) and PLATON (Spek, 2003).

We acknowledge the use of the EPSRC National Crystallography Service, University of Southampton, UK, for data collection and the EPSRC's Chemical Database Service at Daresbury (Fletcher et al., 1996).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: HJ3050). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Amaral, S., Jensen, W. E., Lande, C. P., Turnbull, M. M. \& Woodward, F. M. (2001). Polyhedron, 20, 1317-1322.

Arnáiz, F. J., Aguado, R., Pedrosa, M. R., Mahía, J. \& Maestro, M. A. (2002). Polyhedron, 21, 1635-1642.
Calcagno, P., Kariuki, B. M., Kitchin, S. J., Robinson, J. M. A., Philp, D. \& Harris, K. D. M. (2000). Chem. Eur. J. 6, 2338-2349.
Davies, K. (1983). SNOOPI. Chemical Crystallography Laboratory, University of Oxford, England.
Davies, S. C., Duff, S. E. \& Evans, D. J. (2005). Acta Cryst. E61, m571-m573.
Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.
Ding, Y., Lau, S. S., Fanwick, P. E. \& Walton, R. A. (2000). Inorg. Chim. Acta, 300-302, 505-511.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Ferrari, M. B., Gasparri, G. F., Pelizzi, C. \& Tarasconi, P. (1986). Acta Cryst. C42, 1148-1151.
Fletcher, D. A., McMeeking, R. F. \& Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.
Harding, D. J., Harding, P., Thurakitseree, T. \& Adams, H. (2007). Acta Cryst. C63, m163-m165.
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Kennedy, A. R., Sloss, S. W. \& Spicer, M. D. (1997). Acta Cryst. C53, 292-293.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Morgan, J. L., Robinson, B. H. \& Simpson, J. (2002). Acta Cryst. E58, m504m506.
Ogawa, C., Konishi, H., Sugiura, M. \& Kobayashi, S. (2004). Org. Biomol. Chem. 2, 446-448
Oh, S. O. \& Mo, S. J. (1995). J. Korean Chem. Soc. 39, 318-322.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press
Povey, D. C., Lobana, T. S. \& Bhatia, P. K. (1991). J. Chem. Crystallogr. 21, 1319.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
Smith, M. L., Almond, P. M., Albrecht-Schmitt, T. E. \& Hill, W. E. (2003). Acta Cryst. E59, m1013-m1014.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yang, R.-N., Sun, Y.-A., Hou, Y.-M., Hu, X.-Y. \& Jin, D.-M. (2000). Chin. J. Chem. 18, 346-350.
Zheng, B., Liu, G., Gou, L., Wang, D.-Y. \& Hu, H.-M. (2005). Acta Cryst. E61, m499-m501.

